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Abstract. The Ising model on the square lattice decorated with random annealed diluted 
competing D vector bond spins is studied. The exact phase diagrams of the critical 
temperature plotted against the concentration and the critical temperature plotted against 
the competing parameter are evaluated analytically and presented. Re-entrant behaviour 
for the ferromagnetic and the antiferromagnetic phases is observed for definite range of 
values of the concentration. A new bond percolation threshold equal to p :  = f (  1 + I / v  2 )  = 
0.8535 . . , is achieved when local competing interactions are present in the system. Moreover 
p :  is independent of the dimensionality ( D )  of the decorating spins and therefore indepen- 
dent of the physical origin of the interactions, as i t  should be. In particular the D = 1 
(k ing) ,  D =  2 (XU), D = 3  (Heisenberg) and D + i c  cases are analysed. 

1. Introduction 

Disorder and competing interactions are very important ingredients in the current 
studies of random dilute magnets. Disorder and competing interactions can be intro- 
duced by randomly decorating the spin system with competing bond spins. Decorated 
Ising spin models have been studied for a long time (see, for example, Syozi (1972) 
for a general reference) but without considering the two ingredients together. For 
example, the annealed disorder has been considered by Syozi and Miyazima ( 1966) 
in the study of the critical temperature of several random diluted decorated Ising 
models. Kasai et al (1969) and Kasai and Syozi (1973) have also investigated the 
square lattice Ising model decorated with random annealed arrangements of ferromag- 
netic and antiferromagnetic bonds. 

Moreover the phase diagram of the annealed diluted version of the decorated 
q-state Potts model on the square lattice has also been solved exactly by Wu (1980). 
Furthermore, Falk (1980) has studied the annealed one- and two-dimensional Ising 
models decorated with planar X Y  spins. However, Shukla and Wortis (1980) and 
Grest (1980), in an attempt to describe the spin-glass behaviour of iron-rich Fe-AI 
alloys, have studied the quenched disordered spin model, due to Sat0 and Arrott 
(1959), by considering the disorder sublattice as decorating the regular one. Also, 
De’Bell ( 1980) has proposed a simple annealed bond-decorated Ising model to illustrate 
the frustation effects found in simple cubic amorphous Ising antiferromagnets, which 
show a behaviour similar to that discussed in the present paper. On the other hand, 
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competing interactions without disorder in decorated models have been considered by 
several authors. Nakano (1968) and Hattori and  Nakano (1968) have introduced the 
competing interactions in order to study the magnetic and thermal properties of the 
square lattice antiferromagnetic decorated Ising model in the presence of a magnetic 
field. Huse er a1 (1981), motivated by the studies of the axial next-nearest-neighbour 
Ising ( A N N N I )  model, have investigated the so-called ‘mock’ A N N N I  model by decorat- 
ing the square lattice Ising model with a finite sequence of competing Ising bond spins 
along one particular direction. Very recently, Selke and  Wu (1986) generalised this 
latter model replacing the Ising spins by q-state Potts variables. Axial competing 
interactions in the square lattice Ising model have also been considered by dos Santos 
et a1 (1986) by decorating the bonds with classical D-dimensional vector spins. The 
phase diagram and thermodynamic properties of this latter model have been evaluated 
exactly for a general D-dimensional model even in the D + cc limit. The phase diagram 
of the isotropic version of this model has also been studied by GonGalves and Horiguchi 
(1984). 

In the present paper we study the square lattice Ising model decorated with randomly 
annealed D vector bond spins. We assume that the bond vector spins d o  not interact 
with each other and only interact ferromagnetically with their nearest-neighbour site 
Ising spins. Therefore they can be replaced by an effective ferromagnetic interaction 
between the site spins. Actually, the present model is the general version of the model 
studied by De’Bell (1980) which corresponds to the D = 1 particular case. This effective 
interaction is temperature and field dependent as has been pointed out by dos Santos 
er a1 (1986). I f  we assume that the Ising spins interact antiferromagnetically our model 
is equivalent to a square lattice antiferromagnetic Ising model with a random annealed 
distribution of additional effective ferromagnetic bonds. For certain values of the 
coupling constants this effective ferromagnetic interaction can be compared with the 
original homogeneous antiferromagnetic one and the competing effects come in to 
play in the system in a random way. However, for annealed distribution of bond spins 
these effects d o  not induce the appearance of the spin-glass phase since the randomness 
of the decorating bond spins is allowed to adjust itself so that the system achieves 
genuine thermodynamic equilibrium (Thorpe and Beeman 1976). On the other hand, 
the phase diagram shows an abrupt change in the stability of the ground-state phases 
at a given concentration and the appearance of re-entrants in both ferromagnetic and 
antiferromagnetic lines. The relation of the re-entrant phenomena and the ground-state 
degeneracy is a consequence of the presence of the competing interactions in the model 
Hamiltonian as has been studied by Kitatani et a1 (1986) for systems with competing 
periodic nearest-neighbour interactions. However, in the present model the randomness 
of the competing interaction introduces a new mechanism for the balance of the stability 
of the ground-state degeneracy. 

In 8 2 we present and solve the model Hamiltonian by evaluating exactly the phase 
diagrams which are discussed in 8 3.  The conclusions are summarised in 8 4. 

2. The model Hamiltonian and the solution 

We consider a pure antiferromagnetic Ising model on the square lattice with nearest- 
neighbour exchange interactions of coupling constant J2  ( J z  < 0) which is randomly 
decorated with classical D vector bond spins S of magnitude A. When they are present 
the decorating bond spins interact with their nearest-neighbour site spins U (Ising 
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spins) by means of a ferromagnetic exchange interaction of coupling constant J ,  ( J ,  > 0) 
through the Si component along the particular Ising direction, say direction one, where 
S ”  is the S component along the uth direction ( v  = 1,2, . . . , D ) .  In figure 1 a portion 
of the lattice is shown with the sketch of the exchange interactions. 

Figure 1. Portion of the square lattice for a given distribution of decorating bond spins 
with the exchange interactions. 0,  lsing spins;  7 ,  D vector bond spins;  (-1, antiferromag- 
netic; ( -  - - -1, ferromagnetic interactions. 

The Hamiltonian of the system can be written as H = x h  Hh, Hb being the Hamil- 
tonian for a particular b bond of the lattice, i.e. 

Hb = - J ,  t),st( U U ’ )  - J,UU‘ - 8 t h  (1)  

where t h  is the occupation variable for the decorating bond spin Sb, i.e. tb = l (0)  if 
the b bond is decorated (undecorated) and S is the chemical potential related with 
the annealing dilution of the decorating bond spins. 

The partition function of the system is given by 

Z = T r e x p ( - P H )  ( 2 )  
where p = ( K R T ) - - ’ ,  T being the temperature and K R  the Boltzmann constant as usual. 
Tr means the trace (sum) over all configurations allowed by the set of independent 
variables {CT, S, 1). The sums over the decorating spin bond variables {S, t}  can be 
evaluated by using the method of the decoration transformation (Syozi 1972). This 
can be done for a given bond b, since they are independent, by writing 

(3)  

where Ketl is the reduced effective coupling constant and f h  is the normalising factor 
to be determined. The sum over the decorating D vector spins S can be performed 
using the approach of Stanley (1969) (see also dos Santos er a1 (1986) for a more 
detailed calculation). I f  we also perform the trace of the occupation number discrete 
variables t we obtain 

Tris, Tr{,, j exp(-pHb) =.h exP(Ket~Ua‘) 
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where 7) = exp(P8) is the related fugacity, K ,  = PJ,  ( i  = 1, 2), n = (fD - l ) ,  a,, = 
1 + 

G , ( x ) = 2 " r ( n + 1 ) a n x ~ " l , ( x )  ( 6 )  

T ( n )  being the gamma function and l , , ( x )  being the modified Bessel function of the 
first kind of order n. 

(S,,,. being the Kronecker delta function) and 

Now the partition function can be written as 

Z N  =f'" (KI  9 77 )Zo( K e , )  ( 7 )  

where N is the lattice number of sites and Z,,(K,,) is the partition function of the 
isotropic square lattice Ising model with a nearest-neighbour effective exchange interac- 
tion of coupling constant Jett = P-'Ke,. Therefore the free energy per site has an extra 
term proportional to In$ Nevertheless the transition temperatures are not affected 
since f is an analytical function of T. The transition temperatures are given by the 
well known Onsager solution (Onsager 1944) 

sinh2Ke,(K,,  K z ,  7 ) = 1 1 .  (8) 
The sign +( -) in (8)  holds for the ferromagnetic (antiferromagnetic) critical tem- 
perature boundaries. The phase diagram T, x p (critical temperature plotted against 
concentration of decorating bonds) can be obtained analytically from (8). The con- 
centration or the fraction of occupied decorating bonds is related to the chemical 
potential. Since p is the average value of r per bond we can write 

where 

i a  
E = (d) = lim - -In Z,( KeR) 

N - X  2 N  aK,, 

is the nearest-neighbour pair correlation function. After straightforward calculation 
we obtain 

(11) 7) = A[ 1 + (1  + 4 p B / A 2 ) ' " ] / B  

where 

A = ( ~ ~ - ~ ) G , ( ~ A K ~ ) - E [ G , ( ~ A K , ) - ~ , ]  

B = 4a,( 1 -p)G,,(2hKl).  

(12)  

(13) 
Finally, eliminating 7) by substituting (11)-(13) into (8) the phase diagram T , x p  is 
given by 

where 

C = (a* 1) exp(2AaKl) (15) 
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a = - J z / A J ,  being the renormalised competing parameter. On the other hand, the 
phase diagram T, x a (the critical temperature plotted against the competing parameter) 
can be obtained analytically by inverting (8), i.e. 

with 77 given by (1 1). We observe that to get the phase boundary in the ( T ,  x p )  and 
(T ,  x a )  phase diagrams we have to make use of the critical temperature value of the 
nearest-neighbour pair correlation function for the square lattice which is given by 
E = i l / J 2 ,  where the sign +(-) holds for the ferromagnetic (antiferromagnetic) 
boundary. 

3. The phase diagrams 

The phase diagrams ( T, x p )  and ( T ,  x a) can be plotted from (14) and  (16) where G, 
is given in the table 1 for the Ising ( D =  l ) ,  XY ( D = 2 ) ,  Heisenberg ( D = 3 )  and 
D + CO limit cases. 

Table 1. Functions G,,(x) for n = 012 - 1 and 
x = 2 A J , /  K,T 

-~ - 

1 2 cosh x 
2 I” ( x )  
3 sinh x / x  
X exp(2 f2 )  .f = J , /  K , 7  

3.1. Critical temperature against concentration diagrams 

In figure 2 we show the diagram ( T ,  x p )  for D = 1 ,2 ,3  and CO for several values 
of the competing parameter. We observe the appearance of both the ferromagnetic 
and the antiferromagnetic phases for 0 < a < 1. In this range of values of the competing 
parameter the zero-temperature critical concentration is given by p t  = f (  1 f 1/42) when 
the sign +( -)  gives the ferromagnetic (antiferromagnetic) critical concentration. 
Moreover the ferromagnetic boundaries for 0 < Q < 1 are bounded by the a = 0 line 
which happens when the homogeneous antiferromagnetic interaction between the site 
spins vanishes. In this latter case the system behaves like a bond-diluted ferromagnet 
with the exact 4 critical concentration at T = 0 (percolation concentration) for the 
square lattice. Furthermore, for $ < p < p : ,  the ferromagnetic boundaries show a 
re-entrant behaviour with two critical temperatures for a given concentration due to 
the competing effects introduced by the decoration. However, for p > p :  the re-entrant 
behaviour disappears since the effective interaction becomes strong enough to stabilise 
the ferromagnetic order at low temperature. On the other hand, the antiferromagnetic 
boundaries also show the re-entrant behaviour for O <  a < 1, but within a D-dependent 
range of values of p ,  i.e. p ; < p < p b  for D=1 ,  p ; < p < l  for D > 1  and p ; < p < c o  
for D = W .  
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For LY 2 1 the ferromagnetic order is no longer stable since at T = 0 the Ising spins 
order antiferromagnetically while the decorating bond spins remain uncorrelated as 
has been pointed out by dos Santos et al (1986). 

We observe that all lines shown in figure 2 are normalised with different scaling 
factors, i.e. with the critical temperature for the LY at p = O( 1) for the antiferromagnetic 
(ferromagnetic) lines, respectively. Therefore there is no real cross between the fer- 
romagnetic and antiferromagnetic lines for a given a, as is apparent in figures 2( b )  
and ( c ) .  

3.2. Critical temperature against competing parameter diagrams 

The T, x LY diagrams are shown in figure 3 for several values of p and for D = 1 , 2 , 3  
and CO. In these diagrams the abrupt change in the re-entrant behaviour of both the 
ferromagnetic and the antiferromagnetic lines are evidenced as the concentration 
approaches to p :  from the left or from the right. For p = 1 we recover the result of 
dos Santos et a1 (1986) for the pure isotropic decorated Ising model on the square 
lattice while for LY = 0 (absence of decoration) we get the pure antiferromagnetic 
behaviour for the critical temperature. We note that for D + CO the antiferromagnetic 
phase is no longer stable at T = 0 while the ferromagnetic phase is stable only for p > p a .  

4. Conclusions 

We have studied the critical temperature of the antiferromagnetic Ising model on the 
square lattice decorated with annealed random diluted D vector bond spins. The 
analytical expressions of the phase diagrams, critical temperature against concentration 
( T, x p )  and critical temperature against competing ( T, x a )  paiameter have been 
obtained exactly by mapping the present model with the Onsager solution. These 
phase diagrams are shown for the Ising ( D  = l ) ,  XY ( D  = 2),  Heisenberg ( D  = 3)  and 
the D + m  limit cases of the spin dimensionality of the decorating bond spin. The 
T , x p  phase diagram is presented in figure 2 showing the appearance of a re-entrant 
behaviour for both the ferromagnetic and the antiferromagnetic phases for a given a 
(0 < a < 1)  and for a definite range of values of the concentration. For the ferromagnetic 
phase this range is independent of 0, i.e. $ < p < p z  = 0.8535 . . . , while for the antifer- 
romagnetic phase this range of values is equal to p c  = 0.1464. . . < p  < p :  = 0.8535 . . . 
for D = 1 and p ;  = 0.1464. . . < p < 1 for D > 1 .  In  figure 3 we have presented the 
T, x a diagrams for several values of p in which is evidenced the abrupt change in the 
behaviour of the re-entrant boundaries when the concentration becomes greater 
(smaller) than p: (  p , )  for the ferromagnetic (antiferromagnetic) phases. 

In conclusion we point out that the existence of re-entrant behaviour is a con- 
sequence of the presence of local diluted competing effects in the system which has 
been introduced in the present model by decoration. The same conclusion has also 
been found by Coutinho er al (1987) for another model in which the local competing 
effects are generated by an antiferromagnetic site-bond correlated random dilution. 
The quenched diluted decorating version of the present model for hypercubic lattices, 
which is now being studied by one of us (SC) in the framework of the mean-field-like 
renormalisation group, shows in addition to the re-entrant behaviour the appearance 
of the spin-glass phase, as we can anticipate. 
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